49 research outputs found

    Optimal Embedding of Functions for In-Network Computation: Complexity Analysis and Algorithms

    Full text link
    We consider optimal distributed computation of a given function of distributed data. The input (data) nodes and the sink node that receives the function form a connected network that is described by an undirected weighted network graph. The algorithm to compute the given function is described by a weighted directed acyclic graph and is called the computation graph. An embedding defines the computation communication sequence that obtains the function at the sink. Two kinds of optimal embeddings are sought, the embedding that---(1)~minimizes delay in obtaining function at sink, and (2)~minimizes cost of one instance of computation of function. This abstraction is motivated by three applications---in-network computation over sensor networks, operator placement in distributed databases, and module placement in distributed computing. We first show that obtaining minimum-delay and minimum-cost embeddings are both NP-complete problems and that cost minimization is actually MAX SNP-hard. Next, we consider specific forms of the computation graph for which polynomial time solutions are possible. When the computation graph is a tree, a polynomial time algorithm to obtain the minimum delay embedding is described. Next, for the case when the function is described by a layered graph we describe an algorithm that obtains the minimum cost embedding in polynomial time. This algorithm can also be used to obtain an approximation for delay minimization. We then consider bounded treewidth computation graphs and give an algorithm to obtain the minimum cost embedding in polynomial time

    On the Closures of Monotone Algebraic Classes and Variants of the Determinant

    Get PDF

    A Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits

    Full text link
    We study the size blow-up that is necessary to convert an algebraic circuit of product-depth Δ+1\Delta+1 to one of product-depth Δ\Delta in the multilinear setting. We show that for every positive Δ=Δ(n)=o(logn/loglogn),\Delta = \Delta(n) = o(\log n/\log \log n), there is an explicit multilinear polynomial P(Δ)P^{(\Delta)} on nn variables that can be computed by a multilinear formula of product-depth Δ+1\Delta+1 and size O(n)O(n), but not by any multilinear circuit of product-depth Δ\Delta and size less than exp(nΩ(1/Δ))\exp(n^{\Omega(1/\Delta)}). This result is tight up to the constant implicit in the double exponent for all Δ=o(logn/loglogn).\Delta = o(\log n/\log \log n). This strengthens a result of Raz and Yehudayoff (Computational Complexity 2009) who prove a quasipolynomial separation for constant-depth multilinear circuits, and a result of Kayal, Nair and Saha (STACS 2016) who give an exponential separation in the case Δ=1.\Delta = 1. Our separating examples may be viewed as algebraic analogues of variants of the Graph Reachability problem studied by Chen, Oliveira, Servedio and Tan (STOC 2016), who used them to prove lower bounds for constant-depth Boolean circuits

    Streaming algorithms for language recognition problems

    Get PDF
    We study the complexity of the following problems in the streaming model. Membership testing for \DLIN We show that every language in \DLIN\ can be recognised by a randomized one-pass O(logn)O(\log n) space algorithm with inverse polynomial one-sided error, and by a deterministic p-pass O(n/p)O(n/p) space algorithm. We show that these algorithms are optimal. Membership testing for \LL(k)(k) For languages generated by \LL(k)(k) grammars with a bound of rr on the number of nonterminals at any stage in the left-most derivation, we show that membership can be tested by a randomized one-pass O(rlogn)O(r\log n) space algorithm with inverse polynomial (in nn) one-sided error. Membership testing for \DCFL We show that randomized algorithms as efficient as the ones described above for \DLIN\ and \LL(k) (which are subclasses of \DCFL) cannot exist for all of \DCFL: there is a language in \VPL\ (a subclass of \DCFL) for which any randomized p-pass algorithm with error bounded by ϵ<1/2\epsilon < 1/2 must use Ω(n/p)\Omega(n/p) space. Degree sequence problem We study the problem of determining, given a sequence d1,d2,...,dnd_1, d_2,..., d_n and a graph GG, whether the degree sequence of GG is precisely d1,d2,...,dnd_1, d_2,..., d_n. We give a randomized one-pass O(logn)O(\log n) space algorithm with inverse polynomial one-sided error probability. We show that our algorithms are optimal. Our randomized algorithms are based on the recent work of Magniez et al. \cite{MMN09}; our lower bounds are obtained by considering related communication complexity problems

    A Unified Method for Placing Problems in Polylogarithmic Depth

    Get PDF
    In this work we consider the term evaluation problem which is, given a term over some algebra and a valid input to the term, computing the value of the term on that input. In contrast to previous methods we allow the algebra to be completely general and consider the problem of obtaining an efficient upper bound for this problem. Many variants of the problems where the algebra is well behaved have been studied. For example, the problem over the Boolean semiring or over the semiring (N,+,*). We extend this line of work. Our efficient term evaluation algorithm then serves as a tool for obtaining polylogarithmic depth upper bounds for various well-studied problems. To demonstrate the utility of our result we show new bounds and reprove known results for a large spectrum of problems. In particular, the applications of the algorithm we consider include (but are not restricted to) arithmetic formula evaluation, word problems for tree and visibly pushdown automata, and various problems related to bounded tree-width and clique-width graphs

    Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications

    Get PDF
    The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity theory, as the problem is closely related to the problem of separating various complexity classes within P. In this paper, we study the algebraic formula complexity of multiplying d many 2x2 matrices, denoted IMM_d, and show that the well-known divide-and-conquer algorithm cannot be significantly improved at any depth, as long as the formulas are multilinear. Formally, for each depth Delta <= log d, we show that any product-depth Delta multilinear formula for IMM_d must have size exp(Omega(Delta d^{1/Delta})). It also follows from this that any multilinear circuit of product-depth Delta for the same polynomial of the above form must have a size of exp(Omega(d^{1/Delta})). In particular, any polynomial-sized multilinear formula for IMM_d must have depth Omega(log d), and any polynomial-sized multilinear circuit for IMM_d must have depth Omega(log d/log log d). Both these bounds are tight up to constant factors. Our lower bound has the following consequences for multilinear formula complexity. Depth-reduction: A well-known result of Brent (JACM 1974) implies that any formula of size s can be converted to one of size s^{O(1)} and depth O(log s); further, this reduction continues to hold for multilinear formulas. On the other hand, our lower bound implies that any depth-reduction in the multilinear setting cannot reduce the depth to o(log s) without a superpolynomial blow-up in size. Separations from general formulas: Shpilka and Yehudayoff (FnTTCS 2010) asked whether general formulas can be more efficient than multilinear formulas for computing multilinear polynomials. Our result, along with a non-trivial upper bound for IMM_d implied by a result of Gupta, Kamath, Kayal and Saptharishi (SICOMP 2016), shows that for any size s and product-depth Delta = o(log s), general formulas of size s and product-depth Delta cannot be converted to multilinear formulas of size s^{O(1)} and product-depth Delta, when the underlying field has characteristic zero
    corecore